590 research outputs found

    Magic sets with full sharing

    Get PDF
    In this paper we study the relationship between tabulation and goal-oriented bottom-up evaluation of logic programs. Differences emerge when one tries to identify features of one evaluation method in the other. We show that to obtain the same effect as tabulation in top-down evaluation, one has to perform a careful {\em adornment} in programs to be evaluated bottom-up. Furthermore we propose an efficient algorithm to perform forward subsumption che cking over adorned {\em magic facts}

    Rules for contrast sets

    Get PDF
    In this paper we present a technique to derive rules describing contrast sets. Contrast sets are a formalism to represent groups diferences. We propose a novel approach to describe directional contrasts using rules where the contrasting efect is partitioned into pairs of groups. Our approach makes use of a directional Fisher Exact Test to and significant diferences across groups. We used a Bonferroni within search adjustment to control type I errors and a pruning technique to prevent derivation of non significant contrast set specializations.Thanks to Prof. M. Pazzani for kindly providing the code for the STUCCO algorithm. This work was Supported by Fundacao Ciencia e Tecnologia, Project PFound, Project ProtUnf, FEDER and Programa de Financiamento Plurianual de Unidades de I & D

    Time series motifs statistical significance

    Get PDF
    Time series motif discovery is the task of extracting previously unknown recurrent patterns from time series data. It is an important problem within applications that range from finance to health. Many algorithms have been proposed for the task of eficiently finding motifs. Surprisingly, most of these proposals do not focus on how to evaluate the discovered motifs. They are typically evaluated by human experts. This is unfeasible even for moderately sized datasets, since the number of discovered motifs tends to be prohibitively large. Statistical significance tests are widely used in bioinformatics and association rules mining communities to evaluate the extracted patterns. In this work we present an approach to calculate time series motifs statistical significance. Our proposal leverages work from the bioinformatics community by using a symbolic definition of time series motifs to derive each motif's p-value. We estimate the expected frequency of a motif by using Markov Chain models. The p-value is then assessed by comparing the actual frequency to the estimated one using statistical hypothesis tests. Our contribution gives means to the application of a powerful technique - statistical tests - to a time series setting.This provides researchers and practitioners with an important tool to evaluate automatically the degree of relevance of each extracted motif.(undefined

    Query driven sequence pattern mining

    Get PDF
    The discovery of frequent patterns present in biological sequences has a large number of applications, ranging from classification, clustering and understanding sequence structure and function. This paper presents an algorithm that discovers frequent sequence patterns (motifs) present in a query sequence in respect to a database of sequences. The query is used to guide the mining process and thus only the patterns present in the query are reported. Two main types of patterns can be identified: flexible and rigid gap patterns. The user can choose to report all or only maximal patterns. Constraints and Substitution Sets are pushed directly into the mining process. Experimental evaluation shows the efficiency of the algorithm, the usefulness and the relevance of the extracted patterns.Fundação para a Ciência e a Tecnologia (FCT

    Protein sequence pattern mining with constraints

    Get PDF
    Considering the characteristics of biological sequence databases, which typically have a small alphabet, a very long length and a relative small size (several hundreds of sequences), we propose a new sequence mining algorithm (gIL). gIL was developed for linear sequence pattern mining and results from the combination of some of the most efficient techniques used in sequence and itemset mining. The algorithm exhibits a high adaptability, yielding a smooth and direct introduction of various types of features into the mining process, namely the extraction of rigid and arbitrary gap patterns. Both breadth or a depth first traversal are possible. The experimental evaluation, in synthetic and real life protein databases, has shown that our algorithm has superior performance to state-of-the art algorithms. The use of constraints has also proved to be a very useful tool to specify user interesting patternsFundação para a Ciência e a Tecnologia (FCT

    Automatically estimating iSAX parameters

    Get PDF
    The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method

    Multiresolution motif discovery in time series

    Get PDF
    Time series motif discovery is an important problem with applications in a variety of areas that range from telecommunications to medicine. Several algorithms have been proposed to solve the problem. However, these algorithms heavily use expensive random disk accesses or assume the data can't into main memory. They only consider motifs at a single resolution and are not suited to interactivity. In this work, we tackle the motif discovery problem as an approximate Top-K frequent subsequence discovery problem. We fully exploit state of the art iSAX representation multiresolution capability to obtain motifs at diferent resolutions. This property yields interactivity, allowing the user to navigate along the Top-K motifs structure. This permits a deeper understanding of the time series database. Further, we apply the Top-K space saving algorithm to our frequent subsequences approach. A scalable algorithm is obtained that is suitable for data stream like applications where small memory devices such as sensors are used. Our approach is scalable and disk-eficient since it only needs one single pass over the time series database. We provide empirical evidence of the validity of the algorithm in datasets from diferent areas that aim to represent practical applications.(undefined

    Classifying heart sounds using multiresolution time series motifs : an exploratory study

    Get PDF
    The aim of this work is to describe an exploratory study on the use of a SAX-based Multiresolution Motif Discovery method for Heart Sound Classification. The idea of our work is to discover relevant frequent motifs in the audio signals and use the discovered motifs and their frequency as characterizing attributes. We also describe different configurations of motif discovery for defining attributes and compare the use of a decision tree based algorithm with random forests on this kind of data. Experiments were performed with a dataset obtained from a clinic trial in hospitals using the digital stethoscope DigiScope. This exploratory study suggests that motifs contain valuable information that can be further exploited for Heart Sound Classification

    Classifying heart sounds using SAX motifs, random forests and text mining techniques

    Get PDF
    In this paper we describe an approach to classifying heart sounds (classes Normal, Murmur and Extra-systole) that is based on the discretization of sound signals using the SAX (Symbolic Aggregate Approximation) representation. The ability of automatically classifying heart sounds or at least support human decision in this task is socially relevant to spread the reach of medical care using simple mobile devices or digital stethoscopes. In our approach, sounds are firrst pre-processed using signal processing techniques (decimate, low-pass filter, normalize, Shannon envelope). Then the pre-processed symbols are transformed into sequences of discrete SAX symbols. These sequences are subject to a process of motif discovery. Frequent sequences of symbols (motifs) are adopted as features. Each sound is then characterized by the frequent motifs that occur in it and their respective frequency. This is similar to the term frequency (TF) model used in text mining. In this paper we compare the TF model with the application of the TFIDF (Term frequency - Inverse Document Frequency) and the use of bi-grams (frequent size two sequences of motifs). Results show the ability of the motifs based TF approach to separate classes and the relative value of the TFIDF and the bi-grams variants. The separation of the Extra-systole class is overly dificult and much better results are obtained for separating the Murmur class. Empirical validation is conducted using real data collected in noisy environments. We have also assessed the cost-reduction potential of the proposed methods by considering a fixed cost model and using a cost sensitive meta algorithm.Portuguese Funds through the FCT - Fundacao para a Ciencia e a Tecnologia (proj. FCOMP-01-0124-FEDER-037281 and FCOMP-01-0124-FEDER-PEst-OE/EEI/UI0760/2014)
    • …
    corecore